73 research outputs found

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other

    Type inference in flexible model-driven engineering using classification algorithms

    Get PDF
    Flexible or bottom-up model-driven engineering (MDE) is an emerging approach to domain and systems modelling. Domain experts, who have detailed domain knowledge, typically lack the technical expertise to transfer this knowledge using traditional MDE tools. Flexible MDE approaches tackle this challenge by promoting the use of simple drawing tools to increase the involvement of domain experts in the language definition process. In such approaches, no metamodel is created upfront, but instead the process starts with the definition of example models that will be used to infer the metamodel. Pre-defined metamodels created by MDE experts may miss important concepts of the domain and thus restrict their expressiveness. However, the lack of a metamodel, that encodes the semantics of conforming models has some drawbacks, among others that of having models with elements that are unintentionally left untyped. In this paper, we propose the use of classification algorithms to help with the inference of such untyped elements. We evaluate the proposed approach in a number of random generated example models from various domains. The correct type prediction varies from 23 to 100% depending on the domain, the proportion of elements that were left untyped and the prediction algorithm used

    A Serial Combination of Neural Network for Arabic OCR

    No full text

    Scalable Armies of Model Clones through Data Sharing

    Get PDF
    International audienceCloning a model is usually done by duplicating all its runtime objects into a new model. This approach leads to memory consumption problems for operations that create and manipulate large quantities of clones (e.g., design space exploration). We propose an original approach that exploits the fact that operations rarely modify a whole model. Given a set of immutable properties, our cloning approach determines the objects and fields that can be shared between the runtime representations of a model and its clones. Our generic cloning algorithm is parameterized with three strategies that establish a trade-off between memory savings and the ease of clone manipulation. We implemented the strategies within the Eclipse Modeling Framework (EMF) and evaluated memory footprints and computation overheads with 100 randomly generated metamodels and models. Results show a positive correlation between the proportion of shareable properties and memory savings, while the worst median overhead is 9,5% when manipulating the clones
    • …
    corecore